Coarse-grained computations for a micellar system.
نویسندگان
چکیده
We establish, through coarse-grained computation, a connection between traditional, continuum numerical algorithms (initial value problems as well as fixed point algorithms), and atomistic simulations of the Larson model of micelle formation. The procedure hinges on the (expected) evolution of a few slow, coarse-grained mesoscopic observables of the Monte Carlo simulation, and on (computational) time scale separation between these and the remaining "slaved," fast variables. Short bursts of appropriately initialized atomistic simulation are used to estimate the (coarse grained, deterministic) local dynamics of the evolution of the observables. These estimates are then in turn used to accelerate the evolution to computational stationarity through traditional continuum algorithms (forward Euler integration, Newton-Raphson fixed point computation). This "equation-free" framework, bypassing the derivation of explicit, closed equations for the observables (e.g., equations of state), may provide a computational bridge between direct atomistic/stochastic simulation and the analysis of its macroscopic, system-level consequences.
منابع مشابه
Coarse-grained computations of demixing in dense gas-fluidized beds.
We use an "equation-free," coarse-grained computational approach to accelerate molecular dynamics-based computations of demixing (segregation) of dissimilar particles subject to an upward gas flow (gas-fluidized beds). We explore the coarse-grained dynamics of these phenomena in gently fluidized beds of solid mixtures of different densities, typically a slow process for which reasonable continu...
متن کاملCoarse-grained kinetic computations for rare events: application to micelle formation.
We discuss a coarse-grained approach to the computation of rare events in the context of grand canonical Monte Carlo (GCMC) simulations of self-assembly of surfactant molecules into micelles. The basic assumption is that the computational system dynamics can be decomposed into two parts-fast (noise) and slow (reaction coordinates) dynamics, so that the system can be described by an effective, c...
متن کاملCoarse-Grained Parallel Transitive Closure Algorithm: Path Decomposition Technique
We investigate the relation between fine-grained and coarse-grained distributed computations of a class of problems related to the generic transitive closure problem (TC for short). We choose an intricate systolic algorithm for the TC problem, by Guibas, Kung and Thompson (GKT algorithm for short), as a starting point due to its particularly close relationship to matrix multiplication. The GKT ...
متن کاملMapping Applications to Coarse-Grain Reconfigurable Architectures
Coarse-grained reconfigurable architectures (CGRAs) are capable of achieving both goals of high performance and flexibility. CGRAs not only improve performance by exploiting the features of repetitive computations, but also can adapt to diverse computations by dynamically changing configurations of an array of its internal processing elements (PEs) and their interconnections. Many CGRAs have be...
متن کاملBridging between NMA and Elastic Network Models: Preserving All-Atom Accuracy in Coarse-Grained Models
Dynamics can provide deep insights into the functional mechanisms of proteins and protein complexes. For large protein complexes such as GroEL/GroES with more than 8,000 residues, obtaining a fine-grained all-atom description of its normal mode motions can be computationally prohibitive and is often unnecessary. For this reason, coarse-grained models have been used successfully. However, most e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 122 4 شماره
صفحات -
تاریخ انتشار 2005